
Arsenic Rule

Implementation

Percentage of CWSs with Mean Arsenic above 10 ppb **Percentage of CWSs with Mean Arsenic** above 10 ppb 0.0 to 0.6% 0.7 to 3.5% 3.6 to 6.0% **6.1**+ % **States without compliance data**

Arsenic: Summary of New Rule

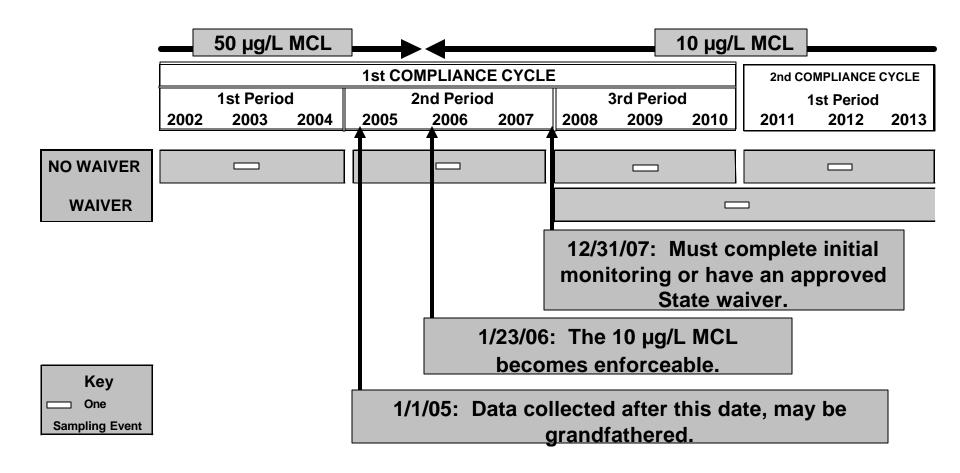
- MCL lowered to 10 µg/L
- Applies to CWSs AND NTNCWSs
- Enforceable January 23, 2006

5

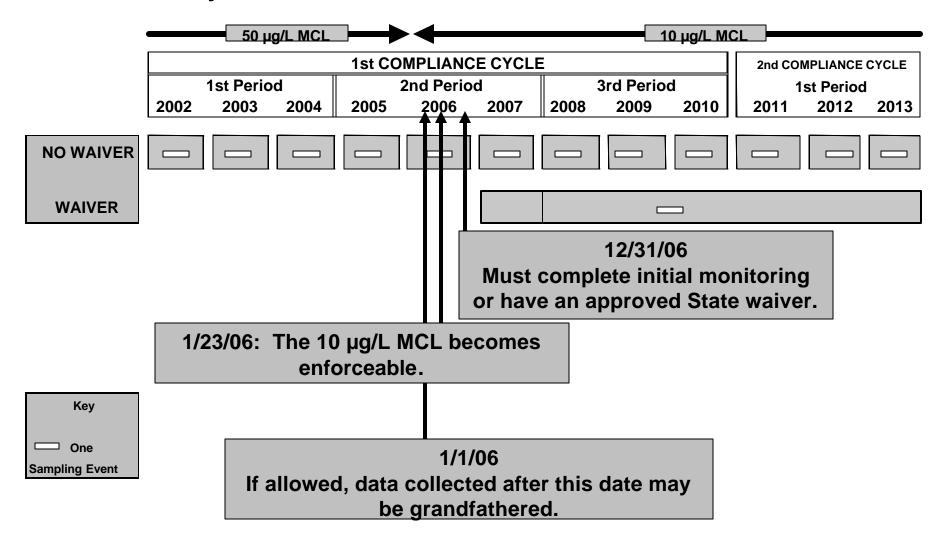
Arsenic: Summary of New Rule

- Arsenic added to Standardized Monitoring Framework
 - No changes to current monitoring practices
- New requirements for Consumer Confidence Reports (CCR)

6

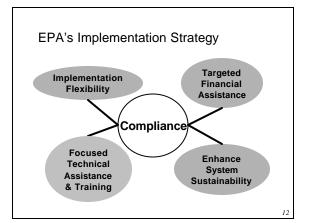

Arsenic Monitoring

- Placed in Standardized Monitoring Framework
- Systems may continue current monitoring schemes
 - Grandfathered data
 - Extension of monitoring deadline
- Waivers can be granted


This slide left intentionally blank

Standardized Monitoring Framework: Ground Water Systems

Standardized Monitoring Framework: Surface Water Systems


Consumer Confidence Report Requirements

Due Date	Arsenic Detect Level	Informational Statement	Health Effects Statement	Violation Identified
7/1/02 & beyond	> 5 ppb but £ 10 ppb	Ö		
7/1/02 thru 7/1/06	>10 ppb but £ 50 ppb		Ö	
7/1/07 & beyond	> 10 ppb		Ö	Ö

IOC, VOC, & SOC Compliance New Requirements

- For systems monitoring annually or less often
 - MCL exceedance triggers quarterly monitoring
 - Violation determination based on 4 quarters of monitoring
 - Violation if annual average exceeds MCL

11

Financing Treatment

- Drinking Water State Revolving Fund
 - Principal mechanism for compliance funding
 - FY'03 budget request \$850 million

13

Financing Treatment

- Rural Utilities Service (Dept. of Agriculture)
 - \$750 million annually (not all for compliance)
 - Arsenic compliance a funding priority
 - www.usda.gov/rus/water/programs.htm

14

Exemptions [SDWA 1416(a)]

- Useful prioritization tool for states
- Provides additional time for the most disadvantaged systems
 - Up to 9 additional years for small water systems
- Puts system on path to compliance
- EPA guidance streamlines approach

15

Any Size System Systems Serving 3,300 O 5 Years 10 15 3 Year Exemption Extensions

Implementation Flexibility Two SDWA Treatment Paths

Centralized Treatment

Point of Use

SDWA Safeguards to Protect Public Health [1412(b)(4)(E)]

- POU prohibited for microbial contaminants
- Units must be owned, maintained, and operated by PWS
- POUs must be equipped with mechanical warnings
- Devices must be independently certified, if product standards exist

18

Implementation of POU Option To Protect Public Health

- Protective Program will involve:
 - Rigorous maintenance program
 - Consumer participation and education
 - Monitoring strategy
 - Pilot testing

19

Additional Information

EPA Arsenic website www.epa.gov/safewater/ars/implement.html

Safe Drinking Water Hotline (800) 426-4791 or (703) 285-1093 sdwa@epa.gov

19

Arsenic

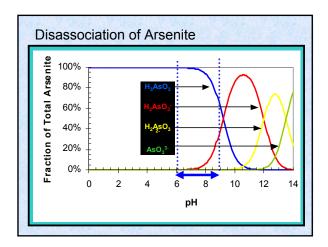
Mitigation Strategies

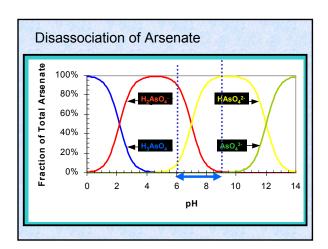
Presentation Summary

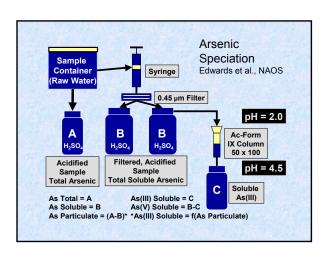
- Resources
- Arsenic chemistry
- Monitoring and planning
- Treatment avoidance options
- Treatment options
 - Existing
 - New
- Piloting
- Regulatory considerations
- Decision trees
- · Panel discussion

_	

Resources


- EPA -- Arsenic Treatment Technology Evaluation Handbook for Small Systems
- EPA -- Design Manual: Removal of Arsenic From Drinking Water Supplies by Adsorptive Media


Resources

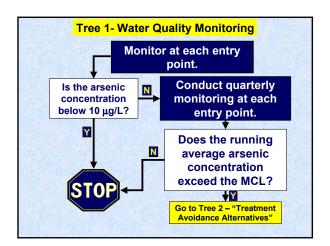

- EPA -- Design Manual: Removal of Arsenic From Drinking Water Supplies by Ion Exchange
- AWWARF -- Implementation of Arsenic Treatment Systems:
 - Part 1: Process Selection
 - Part 2: Design Considerations, Operation, and Maintenance

Arsenic Chemistry

- Found in water in two oxidation states
 - Arsenite (trivalent As III)
 - Arsenate (pentavalent As V)

But, For Practical Purposes....

- · Plan on oxidation by chlorination
 - All technologies remove arsenic V better than arsenic III
 - Many States will require disinfection
- · Some exceptions, however

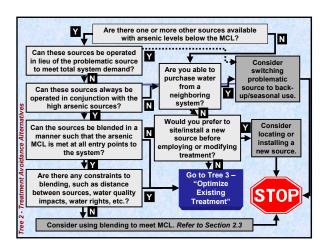

Mitigation Techniques

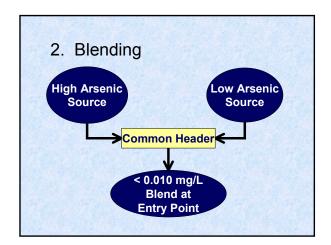
- Treatment Avoidance
- · Centralized treatment
 - Techniques
 - · Side-stream treatment
 - Full treatment
 - Technologies
 - Existing
 - New

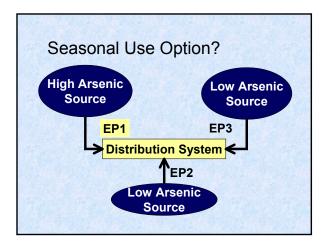
Decision Tree Overview

- · Step 1: Water quality monitoring
- Step 2: Treatment avoidance
- Step 3: Optimizing existing treatment
- Step 4: Selecting new treatment

_	



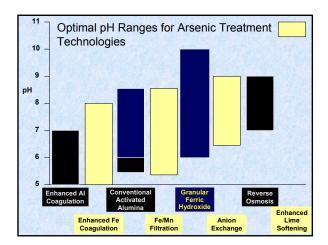

Step 2: Treatment Avoidance Options


- 1. Alternative Sources
- 2. Blending

1. Alternative Source(s)

- Abandon high arsenic source(s)
- Use sources that meet standards

Treatment Options


Step 3: Optimization of Existing Technologies Step 4: Addition of New Technologies

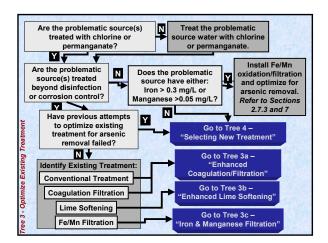
4 Categories of Technologies

- Sorption Processes
 - Ion Exchange (IX)
 - Activated Alumina (AA)
 - Granular Ferric Hydroxide (GFH)
- Iron & Manganese Removal
 - Oxidation & Filtration

4 Categories of Technologies

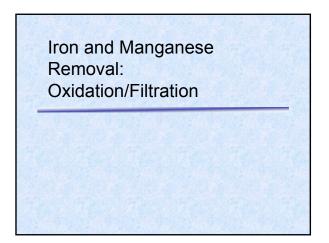
- · Membrane Processes
 - Reverse Osmosis
 - Nanofiltration
- Chemical Precipitation Processes
 - Coagulation Assisted Microfiltration
 - Enhanced Coagulation / Filtration
 - Enhanced Lime Softening

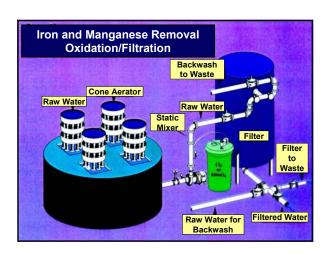
BULLETIN!

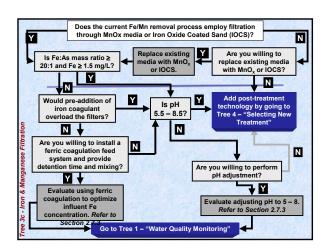

- Throw-away adsorptive technologies
 - Likely to be the treatment of choice for many small systems

Harvard Treatment Plant Video

Film Clip on Harvard


Activated Alumina

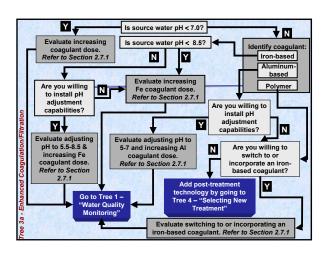

Full Scale Operation at a Small Community PWS

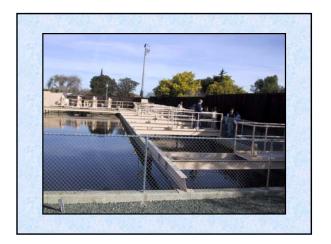


Step 3: Optimization of Existing Technologies

- · Iron and Manganese Removal
 - Oxidation/Filtration
- Enhanced Coagulation/Filtration
- Enhanced Lime Softening

Residuals Produced


- Liquids
 - Backwash water
 - Supernatant
- Solids
 - Sludge


Enhanced Coagulation/Filtration

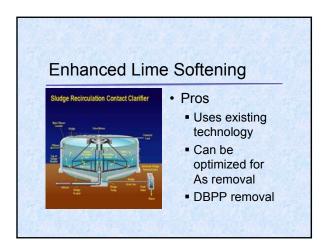
Enhanced Coagulation/Filtration

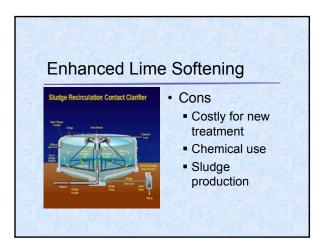
- Defined in Stage 1 D/DBP Rule
- Alum & Ferric Chloride (most common)
 - Metal hydroxide species formed
 - pH range
 - 6 7 for Alum
 - 6 8 for Ferric Chloride

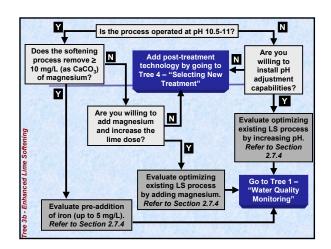
_	
-	
-	

Residuals Produced

- Liquids
 - Backwash water
 - Supernatant
- Solids
 - Sludge


Enhanced Coagulation/Filtration


- Pros
 - Uses existing technology
 - Can be optimized for arsenic removal
 - Disinfection Byproduct Precursor (DBPP) removal


Enhanced Coagulation/Filtration

- Cons
 - Generally only cost effective for existing technology
 - Increased chemical use
 - More sludge
 - Lead/Copper problems

-	

Centralia Video of Mn Removal Plant

Step 4: Installation of New **Technologies**

Membrane Processes **Sorption Processes**

Raw Water Testing: Primary **Parameters**

- Total arsenic
 - Arsenite
 - Arsenate
- Chloride
- Fluoride
- Iron
- Magnesium
- Manganese
- Nitrate/Nitrite
- Orthophosphate
- pH
- Silica
- Sulfate
- Total Dissolved Solids (TDS)

-	

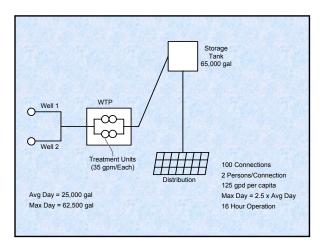
Raw Water Testing:Secondary Parameters

- Secondary parameters
 - Alkalinity
 - Aluminum
 - Calcium
 - Turbidity
 - Hardness

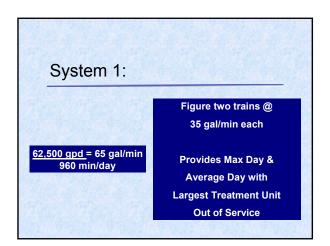
Design Information

- Capacity of source(s)
- Location of source(s)
- · Maximum day water use
 - Gravity storage
- Peak instantaneous demand
 - Hydropneumatic systems

Design Information

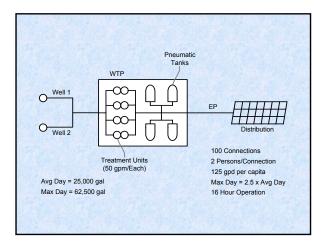

- Target finished water arsenic concentration
- Other
 - Publicly Owned Treatment Works (POTW)
 - Land
 - Labor
 - Acceptable water loss

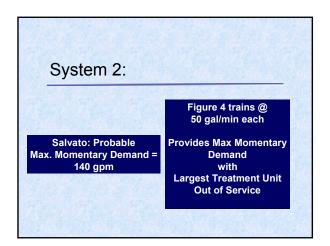
 _
 _
 _
_
 _
 _

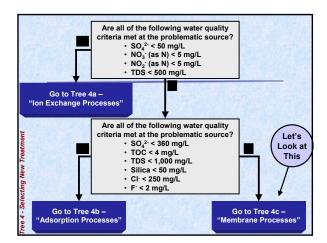

2 Systems With 100 Service Connections

System 1:

- Gravity Storage = Max. Day
- 2 wells with single entry point
- · Assume:
 - 125 gpcpd ave.
 - 2 people/connection
 - Max = 2.5 x ave.
 - 16 hour/day pumping
 - 62,500 gpd = max day

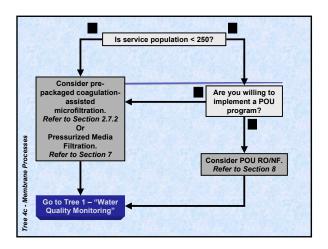


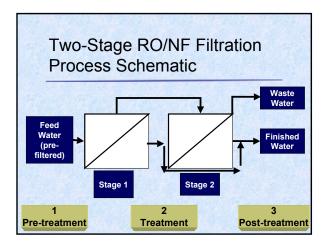

_	



System 2:

- · Hydropneumatic tanks
- 2 wells with single entry point
- · Assume:
 - 125 gpcpd ave.
 - 2 people/connection
 - Max = 2.5 x ave.
 - 16 hour/day pumping
 - 62,500 gpd = max day

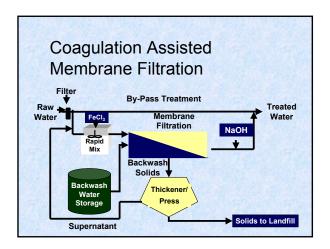




Membrane Processes

Reverse Osmosis*
Nanofiltration
Coagulation Assisted
Microfiltration

Residuals


- Liquids
 - High total dissolved solids (TDS) in waste water
- Solids
 - Membranes

Reverse Osmosis/Nanofiltration

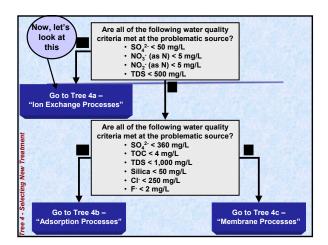
- Pros
 - Effective for arsenic removal
 - Effective for removal of other contaminants
 - Applicable for POU or POE

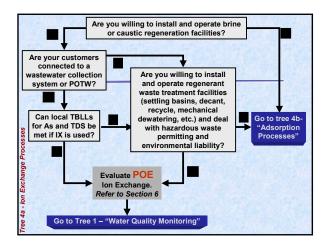
Reverse Osmosis/Nanofiltration

- Cons
 - Pretreatment often required
 - May require
 - Oxidant
 - pH adjustment
- Energy requirements
- Residuals
- Post treatment
- Water loss

Coagulation Assisted Membrane Filtration

- Pros
 - Minimal residuals
 - Very little water loss (< 0.1 %)
 - Relatively easy process control
 - Low chemical requirements

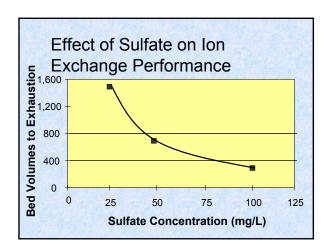

Coagulation Assisted Membrane Filtration

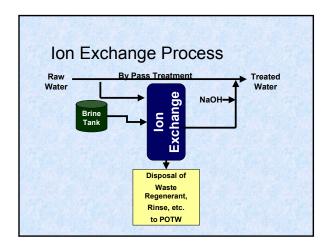


- Cons
 - High equipment costs
 - Finished water adjustment may be necessary
 - pH
 - Fluoride

Sorption Treatment Processes

Ion Exchange
Activated Alumina
Granular Ferric Hydroxide

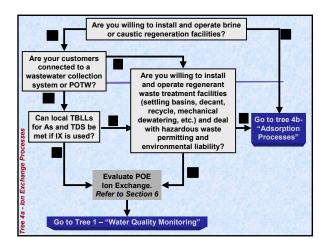


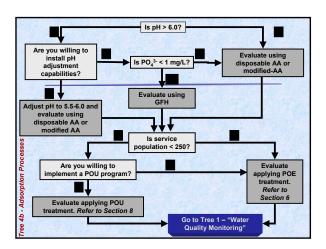

Ion Exchange


- Physical-chemical process
 - lons exchanged between a solution phase and solid resin phase
 - Strong-base anion exchange resin
 - Insensitive to pH in range of natural waters

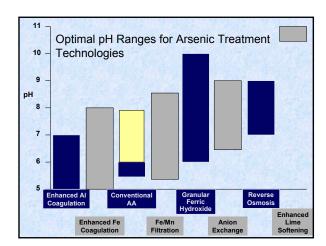
Ion Exchange

- Exchange affinity is a function of net surface charge
- SO42- > HAsO42- > NO3- > NO2-> CI- > H2AsO4- > Si(OH)4
- High TDS can adversely affect the performance

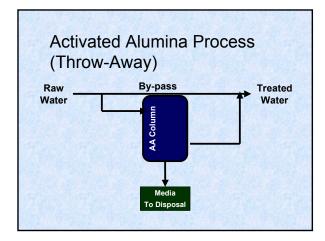

Anion Exchange

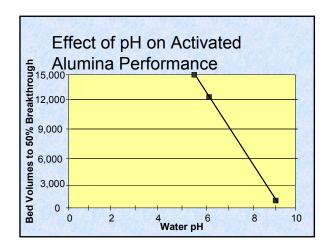

Ion Exchange

- Pros
 - Operates on demand
 - Short contact time (flow insensitive)
 - Insensitive to pH over the range of natural waters
 - Lower chemical requirement (except for NaCl) than for AA or coagulation/microfiltration
 - Appropriate for small systems


Ion Exchange

- Cons
 - Large volumes of salt
 - Sulfate can be a problem
 - Finished water pH adjustment may be required
 - Chromatographic peaking
 - Large volumes of brine for disposal


Sorption Processes (Continued) Activated Alumina*


Activated Alumina

- Porous granular media (aluminum trioxide) with ion exchange properties
- · Competing ions

OH- > H2AsO4- > Si(OH)3O- > F- > HSeO3-> TOC > SO42- > H3AsO3

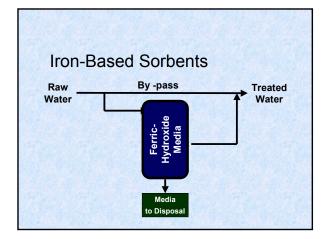
Activated Alumina: Pros

- · Operates on demand
- Relatively insensitive to TDS and sulfate
- · High quality finished water possible
- Highly selective for arsenic and fluoride
- · Disposable media option
- Affordable

Activated Alumina: Cons

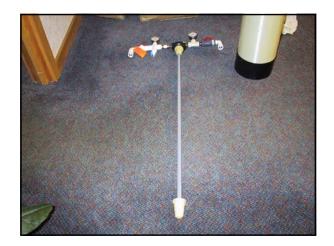
- Regeneration
 - Both acid and base required
 - Causes loss of removal efficiency
 - Produces significant volume of spent regenerant
- Pre- and post-pH adjustment
- Media tend to dissolve
- Slow adsorption kinetics
- Removes fluoride
- Waste disposal

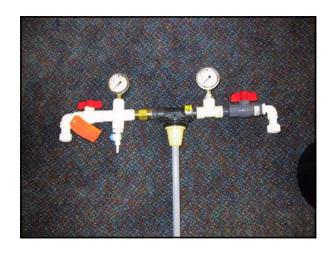
Emerging Disposable Media



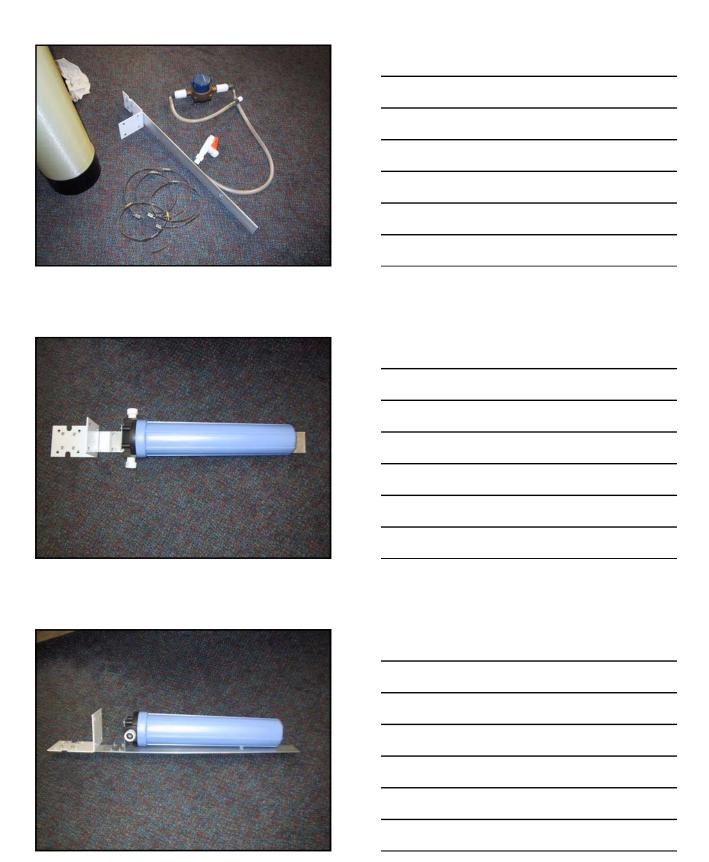
- Conventional AA
- Iron-Modified AA
- · High Porosity AA
- Proprietary AA
- Granular Ferric Hydroxide

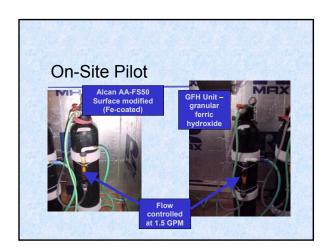
Emerging Disposable Media

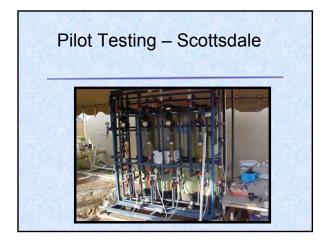

- High As removal at natural pH
- Disposable; no regeneration required
- No hazardous wastes produced
- NSF 61 certified



-	


Need For Pilot Testing · New media Interferences •Pilot - Small Scale Column **Protocol** Objectives Media Description Process Description · Project Schedule · Project Documentation WQ Data Collection and Analysis · QA/QC · Residual Management and Disposal Film Clip on Pilot Plant





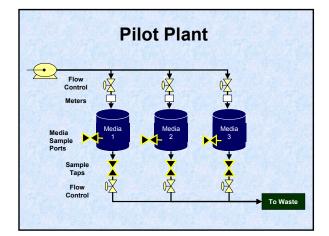
Pilot Testing - Scottsdale

- High water temperature caused problems with ion exchange (IX) testing
 - Scaling of control system
- All media become more effective as pH approaches 6.0

Pilot Testing - Scottsdale

- · Guard columns needed
 - Unpredictable peaks with pH excursions
- · AA > MCL
 - 72,000 bed volumes
- GFH near non-detection
 - > 62,000 bed volumes

Century Well - Full Scale


- · Head Space?
 - Capital cost reduction
- 4' Diameter X 5' High
 - 50 gpm currently with 5 minutes EBCT
 - · (32" of media)
- Up to 90 gpm
- \$0.5 Million
 - (Mn removal, office, storage, etc.)
- \$10 20,000 for a single vessel

_	
-	

Piloting Potential Technologies

- Arsenic removal
 - Compliance
 - Cost
- Waste production and disposal
 - Compliance
 - Cost

Break Followed by:

Residuals Management (Filmed)

Arsenic

Waste Management Solids and Liquids

Waste Disposal – Contaminants Impacting Disposal Alternatives

- · High or Low pH
- High Total Suspended Solids (TSS)
- High Total Dissolved Solids (TDS)
- High Concentrations of Heavy Metals
- · High Concentrations of competing ions
- · Fluoride, sulfate, chloride
- · Radionuclides and daughter products

Statutes

- The Resource Conservation and Recovery Act (RCRA)
- Clean Water Act (CWA)
 - National Pollutant Discharge Elimination System (NPDES)
- Safe Drinking Water Act (SDWA)
 - Underground Injection Control (UIC)

Solid Residual Disposal

- · Solid Phase
 - Spent media
 - Membranes
 - Sludge

Solid Residual Disposal

Liquid Waste Residual

- Liquid Phase
 - Brines
 - Concentrates
 - Backwash
 - Rinse water
 - Filter to waste etc.

RCRA: Determining Waste Characteristics

- A person who generates a solid waste must determine if that waste is a hazardous waste (40 CFR 262.11)
 - Listed wastes
 - · Characteristic Wastes
 - Excluded wastes

RCRA Regulatory Tests

- Paint Filter Liquids Test
- Toxicity Characteristic Leaching Procedure (TCLP)

Paint Filter Liquids Test

- Wastes containing free liquids banned from disposal in municipal solid waste landfills and hazardous waste landfills
- Liquid wastes must be treated or disposed in an alternative manner

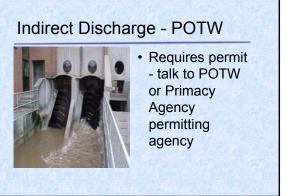
-	
-	
-	
-	

Paint Filter Liquids Test

 Determines if "free" liquids are present in a waste

Toxicity Characteristic Leaching Procedure (TCLP)

- Predicts if hazardous components of a waste are likely to leach out
- Regulatory levels established for
 - 8 metals
 - 32 organics


Exceeding regulatory levels result in designation as hazardous

TCLP

Direct Discharge - NPDES

Indirect Discharge - POTW

- Must not interfere with POTW operations or pass through excessive pollutants to sludge
- Must meet pretreatment requirements / POTW Technically Based Local Limits (TBLLs)
 - Local decision
 - Primacy agency decision

Land Application

- Land Application Clean Sludge Limit (LACSL)
 - As concentration
 41 mg/kg –
 designated clean
 - As concentration >41 mg/kg – limited to 41 kg/hectacre

Disposable Media Options/ Testing Required

- Recycle or Discharge Backwash water
 - Talk to State Permitting Agency regarding requirements
- · Landfill spent media
 - Paint Filter Test
 - Toxicity Characteristic Leaching Procedure (TCLP)

•		
•		
•		
•		
•		
-		
•		
•		

Case Study #1

TCLP Results of Spent Adsorptive Media

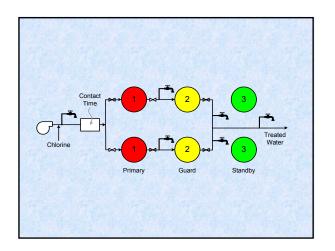
Element	AA Media #1 mg/L	AA Media #2 mg/L	AA Media #3 mg/L	Iron – Based Media mg/L	TCLP TC mg/L	Cal WET STLC mg/L
Arsenic	0.0074	<0.01	<0.01	0.011	5.0	5.0
Barium	4.6	3.9	2.6	7.5	100	100

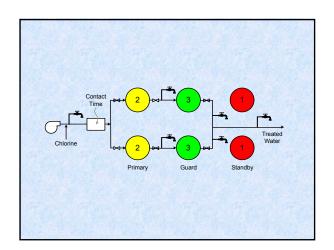
Case Study #1

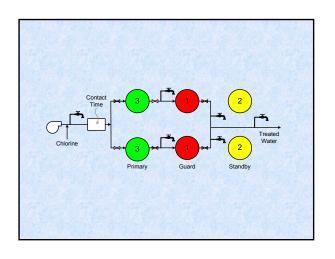
WET Results of Spent Adsorptive Media

WET Spent Adsorption Media							
Element	AA Media #1 mg/kg	AA Media #2 mg/kg	AA Media #3 mg/kg	Iron – Based Media mg/kg	Cal WET STLC mg/L	Cal WET TTLC mg/kg	Cal WET STLC mg/L
Arsenic	30.8	22.9	15.1	413	2.9	500	5
Barium	149	369	330	622	-	10,000	100
Chromium	ND	ND	20.3	31.1	-	500	5

Case Study #2


IX Plant Backwash/Regeneration


Parameter	Units	#	Min.	Max.	Avg.	Arsenic
		Samples	Conc.	Conc.	Conc.	TC
Backwash:						
rss	mg/L	5	6.0	24.0	14.0	-
Total As	: g/L	5	28.9	74.4	59.4	5000
Brine		_				
Rinse: TSS	mg/L	5	6.0	13.0	9.0	-
Total As	: g/L	5	1,830	38,522	15,623	5000
Slow						
Rinse:	mg/L	5	0.5	22.0	9.6	-
rss	: g/L	5	253	3,060	1,332	5000
Total As						
Fast Rinse:						
TSS	mg/L	5	0.5	4.0	1.2	-
Total As	; g/L	5	6.9	356	108	5000


Century	√Well V	'ideo	

Review and Summary

_

_			
_			
_			
			_
_			
_			
_			
_			

Regulatory Design Considerations

- Configuration
 - Parallel
 - Series
 - By-pass
 - Pre-treatment
 - Post-treatment
- Redundancy
- Loading rates
- Process control monitoring

Presentation Summary

- Resources
- Arsenic chemistry
- Monitoring and planning
- Treatment avoidance options
- Treatment options
 - Existing
 - New
- Piloting
- Regulatory considerations
- Residuals management
- · Panel discussion

Implementation In Arizona

Jeff Stuck